Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 12(1): 3316, 2022 02 28.
Article in English | MEDLINE | ID: covidwho-1713215

ABSTRACT

The new coronavirus, SARS-CoV-2, caused the COVID-19 pandemic, characterized by its high rate of contamination, propagation capacity, and lethality rate. In this work, we approach the use of phthalocyanines as an inhibitor of SARS-CoV-2, as they present several interactive properties of the phthalocyanines (Pc) of Cobalt (CoPc), Copper (CuPc) and without a metal group (NoPc) can interact with SARS-CoV-2, showing potential be used as filtering by adsorption on paints on walls, masks, clothes, and air conditioning filters. Molecular modeling techniques through Molecular Docking and Molecular Dynamics were used, where the target was the external structures of the virus, but specifically the envelope protein, main protease, and Spike glycoprotein proteases. Using the g_MM-GBSA module and with it, the molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics provided information on the root-mean-square deviation of the atomic positions provided values between 1 and 2.5. The generalized Born implicit solvation model, Gibbs free energy, and solvent accessible surface area approach were used. Among the results obtained through molecular dynamics, it was noticed that interactions occur since Pc could bind to residues of the active site of macromolecules, demonstrating good interactions; in particular with CoPc. Molecular couplings and free energy showed that S-gly active site residues interacted strongly with phthalocyanines with values ​​of - 182.443 kJ/mol (CoPc), 158.954 kJ/mol (CuPc), and - 129.963 kJ/mol (NoPc). The interactions of Pc's with SARS-CoV-2 may predict some promising candidates for antagonists to the virus, which if confirmed through experimental approaches, may contribute to resolving the global crisis of the COVID-19 pandemic.


Subject(s)
COVID-19 , Cobalt/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Isoindoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Humans
2.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1615945

ABSTRACT

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Subject(s)
Alkaloids/chemistry , Geologic Sediments/microbiology , Isoindoles/chemistry , Streptomyces/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/virology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Isoindoles/isolation & purification , Isoindoles/metabolism , Isoindoles/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , SARS-CoV-2/isolation & purification , Streptomyces/isolation & purification , Streptomyces/metabolism , COVID-19 Drug Treatment
3.
ChemMedChem ; 17(4): e202100582, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1540073

ABSTRACT

The reactive organoselenium compound ebselen is being investigated for treatment of coronavirus disease 2019 (COVID-19) and other diseases. We report structure-activity studies on sulfur analogues of ebselen with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro ), employing turnover and protein-observed mass spectrometry-based assays. The results reveal scope for optimisation of ebselen/ebselen derivative- mediated inhibition of Mpro , particularly with respect to improved selectivity.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , COVID-19/virology , Humans , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Protease Inhibitors/chemistry , Structure-Activity Relationship
4.
Bioorg Chem ; 117: 105455, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487613

ABSTRACT

The main protease (Mpro or 3CLpro) of SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and transcription, thus indicating a potential target for antiviral therapy. A recent repurposing effort has identified ebselen, a multifunctional drug candidate as an inhibitor of Mpro. Our docking of ebselen to the binding pocket of Mpro crystal structure suggests a noncovalent interaction for improvement of potency, antiviral activity and selectivity. To test this hypothesis, we designed and synthesized ebselen derivatives aimed at enhancing their non-covalent bonds within Mpro. The inhibition of Mpro by ebselen derivatives (0.3 µM) was screened in both HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger inhibitory effect on Mpro with IC50 of 0.07-0.38 µM. Further evaluation of three derivatives showed that EB2-7 exhibited the most potent inhibition of SARS-CoV-2 viral replication with an IC50 value of 4.08 µM in HPAepiC cells, as compared to the prototype ebselen at 24.61 µM. Mechanistically, EB2-7 functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken together, our identification of ebselen derivatives with improved antiviral activity may lead to developmental potential for treatment of COVID-19 and SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Isoindoles/chemistry , Organoselenium Compounds/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Catalytic Domain , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Coronavirus 3C Proteases/metabolism , Drug Design , Fluorescence Resonance Energy Transfer , Humans , Isoindoles/metabolism , Isoindoles/pharmacology , Isoindoles/therapeutic use , Molecular Docking Simulation , Organoselenium Compounds/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Tandem Mass Spectrometry , COVID-19 Drug Treatment
5.
Sci Rep ; 11(1): 19937, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462022

ABSTRACT

The risk of contamination and dissemination by SARS-CoV-2 has a strong link with nasal, oral and pharyngeal cavities. Recently, our research group observed the promising performance of an anionic phthalocyanine derivative (APD) used in a mouthwash protocol without photoexcitation; this protocol improved the general clinical condition of patients infected with SARS-CoV-2. The present two-arm study evaluated in vitro the antiviral activity and cytotoxicity of APD. Additionally, a triple-blind randomized controlled trial was conducted with 41 hospitalized patients who tested positive for COVID-19. All the included patients received World Health Organization standard care hospital treatment (non-intensive care) plus active mouthwash (experimental group AM/n = 20) or nonactive mouthwash (control group NAM/n = 21). The adjunct mouthwash intervention protocol used in both groups consisted one-minute gargling/rinsing / 5 times/day until hospital discharge. Groups were compared considering age, number of comorbidities, duration of symptoms prior admission and length of hospital stay (LOS). The associations between group and sex, age range, presence of comorbidities, admission to Intensive care unit (ICU) and death were also evaluated. The in vitro evaluation demonstrated that APD compound was highly effective for reduction of SARS-CoV-2 viral load in the 1.0 mg/mL (99.96%) to 0.125 mg/mL (92.65%) range without causing cytotoxicity. Regarding the clinical trial, the median LOS of the AM group was significantly shortened (4 days) compared with that of the NAM group (7 days) (p = 0.0314). Additionally, gargling/rinsing with APD was very helpful in reducing the severity of symptoms (no ICU care was needed) compared to not gargling/rinsing with APD (28.6% of the patients in the NAM group needed ICU care, and 50% of this ICU subgroup passed way, p = 0.0207). This study indicated that the mechanical action of the protocol involving mouthwash containing a compound with antiviral effects against SARS-CoV-2 may reduce the symptoms of the patients and the spread of infection. The use of APD in a mouthwash as an adjuvant the hospital COVID-19 treatment presented no contraindication and reduced the hospital stay period.Trial registration: The clinical study was registered at REBEC-Brazilian Clinical Trial Register (RBR-58ftdj).


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Isoindoles/therapeutic use , Mouthwashes/therapeutic use , Adult , Aged , Animals , Antiviral Agents/chemistry , Brazil/epidemiology , COVID-19/epidemiology , Chlorocebus aethiops , Female , Humans , Isoindoles/chemistry , Length of Stay , Male , Middle Aged , Mouthwashes/chemistry , SARS-CoV-2/drug effects , Vero Cells
6.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1409705

ABSTRACT

The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Binding Sites/drug effects , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Drug Design , Humans , Isoindoles/chemistry , Isoindoles/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
7.
Comb Chem High Throughput Screen ; 24(5): 716-728, 2021.
Article in English | MEDLINE | ID: covidwho-721423

ABSTRACT

AIMS: To predict potential drugs for COVID-19 by using molecular docking for virtual screening of drugs approved for other clinical applications. BACKGROUND: SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by the WHO due to high mortality, high basic reproduction number, and lack of clinically approved drugs and vaccines. The genome of the virus responsible for COVID-19 has been sequenced. In addition, the three-dimensional structure of the main protease has been determined experimentally. OBJECTIVE: To identify potential drugs that can be repurposed for treatment of COVID-19 by using molecular docking based virtual screening of all approved drugs. METHODS: A list of drugs approved for clinical use was obtained from the SuperDRUG2 database. The structure of the target in the apo form, as well as structures of several target-ligand complexes, were obtained from RCSB PDB. The structure of SARS-CoV-2 Mpro determined from X-ray diffraction data was used as the target. Data regarding drugs in clinical trials for COVID-19 was obtained from clinicaltrials.org. Input for molecular docking based virtual screening was prepared by using Obabel and customized python, bash, and awk scripts. Molecular docking calculations were carried out with Vina and SMINA, and the docked conformations were analyzed and visualized with PLIP, Pymol, and Rasmol. RESULTS: Among the drugs that are being tested in clinical trials for COVID-19, Danoprevir and Darunavir were predicted to have the highest binding affinity for the Main protease (Mpro) target of SARS-CoV-2. Saquinavir and Beclabuvir were identified as the best novel candidates for COVID-19 therapy by using Virtual Screening of drugs approved for other clinical indications. CONCLUSION: Protease inhibitors approved for treatment of other viral diseases have the potential to be repurposed for treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Drug Evaluation, Preclinical , Molecular Docking Simulation , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Benzazepines/chemistry , Benzazepines/pharmacology , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Darunavir/chemistry , Darunavir/pharmacology , Drug Repositioning , High-Throughput Screening Assays , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles/chemistry , Isoindoles/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Saquinavir/chemistry , Saquinavir/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL